7 found
Order:
  1.  21
    Structural completeness of the first‐order predicate calculus.W. A. Pogorzelski & T. Prucnal - 1975 - Mathematical Logic Quarterly 21 (1):315-320.
  2.  47
    Pewien wariant dowodu pełności węższego rachunku funkcyjneogo.J. Słupecki & W. A. Pogorzelski - 1961 - Studia Logica 12 (1):131-132.
  3.  49
    A survey of deduction theorems for the propositional calculi.W. A. Pogorzelski - 1964 - Studia Logica 15 (1):179-179.
  4.  13
    A schema of deduction theorems for the propositional calculus.W. A. Pogorzelski - 1964 - Studia Logica 15 (1):188-188.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5.  40
    Basic properties of deductive systems based on nonclassical logics. Part II.W. A. Pogorzelski & J. Słupecki - 1960 - Studia Logica 10 (1):94-95.
  6.  33
    Some remarks on the concept of completeness of the propositional calculus. I.W. A. Pogorzelski - 1968 - Studia Logica 23 (1):55-58.
  7.  51
    The adequacy of the theories of deductive systems with respect to sentential calculi.W. A. Pogorzelski - 1962 - Studia Logica 13 (1):129-131.
    The sentential calculiR, under discussion, are axiomatizable and implication is among their primitive terms. The modus ponens and the rule of substitution are their primitive rules. ByS r is denoted the set of sentences obtained from the formulae of the calculusR by substituting sentences of a given language for all variables. The variablesx, y, z ... represent the elements of the setS r , the variablesX, Y, Z ... represent the subsets ofS R . The formulacxy designates an implication withx (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark